Balancing Machine & How it works

A Balancing Machine is a measuring tool used for balancing rotating machine parts such as rotors for electric motors, fans, turbines, disc brakes, disc drives, propellers and pumps. The machine usually consists of two rigid pedestals, with suspension and bearings on top supporting a mounting platform. As the part is rotated, the vibration in the suspension is detected with sensors and that information is used to determine the amount of unbalance in the part. Along with phase information, the machine can determine how much and where to add weights to balance the part.

With the rotating part resting on the bearings, a vibration sensor is attached to the suspension. In most soft-bearing machines, a velocity sensor is used. This sensor works by moving a magnet in relation to a fixed coil that generates voltage proportional to the velocity of the vibration. Accelerometers, which measure acceleration of the vibration, can also be used.

A proximity sensor is used to determine the rotational speed, as well as the relative phase of the rotating part. This phase information is then used to filter the vibration information to determine the amount of movement, or force, in one rotation of the part. Also, the time difference between the phase and the vibration peak gives the angle at which the unbalance exists. Amount of unbalance and angle of unbalance give an unbalance vector.

Calibration is performed by adding a known weight at a known angle. In a soft-bearing machine, trial weights must be added in correction planes for each part. This is because the location of the correction planes along the rotational axis is unknown, and therefore it is unknown how much a given amount of weight will affect the balance. By using trial weights, you are adding a known weight at a known angle and getting the unbalance vector caused by it.